Diverging viscosity and soft granular rheology in non-Brownian suspensions.
نویسندگان
چکیده
We use large scale computer simulations and finite-size scaling analysis to study the shear rheology of dense three-dimensional suspensions of frictionless non-Brownian particles in the vicinity of the jamming transition. We perform simulations of soft repulsive particles at constant shear rate, constant pressure, and finite system size and carefully study the asymptotic limits of large system sizes and infinitely hard particle repulsion. We first focus on the asymptotic behavior of the shear viscosity in the hard particle limit. By measuring the viscosity increase over about 5 orders of magnitude, we are able to confirm its asymptotic power law divergence close to the jamming transition. However, a precise determination of the critical density and critical exponent is difficult due to the "multiscaling" behavior of the viscosity. Additionally, finite-size scaling analysis suggests that this divergence is accompanied by a growing correlation length scale, which also diverges algebraically. Finally, we study the effect of particle softness and propose a natural extension of the standard granular rheology, which we test against our simulation data. Close to the jamming transition, this "soft granular rheology" offers a detailed description of the nonlinear rheology of soft particles, which differs from earlier empirical scaling forms.
منابع مشابه
Shear thickening in granular suspensions: interparticle friction and dynamically correlated clusters.
We consider the shear rheology of concentrated suspensions of non-Brownian frictional particles. The key result of our study is the emergence of a pronounced shear-thickening regime, where frictionless particles would normally undergo shear thinning. We can clarify that shear thickening in our simulations is due to enhanced energy dissipation via frictional interparticle forces. Moreover, we ev...
متن کاملA unified framework for non-brownian suspension flows and soft amorphous solids.
While the rheology of non-brownian suspensions in the dilute regime is well understood, their behavior in the dense limit remains mystifying. As the packing fraction of particles increases, particle motion becomes more collective, leading to a growing length scale and scaling properties in the rheology as the material approaches the jamming transition. There is no accepted microscopic descripti...
متن کاملRheology of dense suspensions of elastic capsules: normal stresses, yield stress, jamming and confinement effects.
We study the shearing rheology of dense suspensions of elastic capsules, taking aggregation-free red blood cells as a physiologically relevant example. Particles are non-Brownian and interact only via hydrodynamics and short-range repulsive forces. An analysis of the different stress mechanisms in the suspension shows that the viscosity is governed by the shear elasticity of the capsules, where...
متن کاملShear thickening and migration in granular suspensions.
We study the emergence of shear thickening in dense suspensions of non-Brownian particles. We combine local velocity and concentration measurements using magnetic resonance imaging with macroscopic rheometry experiments. In steady state, we observe that the material is heterogeneous, and we find that the local rheology presents a continuous transition at low shear rate from a viscous to a shear...
متن کاملConstant Stress and Pressure Rheology of Colloidal Suspensions.
We study the constant stress and pressure rheology of dense hard-sphere colloidal suspensions using Brownian dynamics simulation. Expressing the flow behavior in terms of the friction coefficient-the ratio of shear to normal stress-reveals a shear arrest point from the collapse of the rheological data in the non-Brownian limit. The flow curves agree quantitatively (when scaled) with the experim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 91 1 شماره
صفحات -
تاریخ انتشار 2015